
SOME CONSIDERATIONS ON THE RELIABILITY IN THE 
PROBLEMS OF OPTIMAL CONTROL 

(NEWOTORYE VOPROSY NADEZHNOSTI V ZADACHACH OPTIMALNOQO 
UPRAVLENIIA) 

PMM Vol. 30, No. 1, 1966, pp. 14-29 

V.V. TOKAREV 
(Moscow) 

(Rvcdvad May 25. 1965) 

In this paper we formulate the problem of optimal control with the reliability of the controll- 
ing system taken into account (by reliability we mean the probability of the non-interrupted 
performance. 

In the first part (Sect. I-3) we consider the case when the reliability is specified. 
Taking into account the influence of the mode of performance of the system on the pro- 
bability of failure, we formulate the variational problem for the case of a non-stationary 
Poisson type sequence of failures. The formulated problem is then investigated using 
L.S. Pontriagin’s method and applied to the case of the delivery of maximum payload during 
the motion of a body of variable mass when the thrust of the jet (Sect. 2) and the exhaust 
velocity are limited (Sect. 3). 

Analytical solutions of particular problems for the case of limited thrust are obtained 
in Sect. 2. 

In the second part (Sections 4 and 5) we consider the problem of determining the 
optimal probability of failure-free performance of a rocket engine. Here, the following 
averaged characteritics (mathematical expectations) as maximum payload (Sect. 4) or the 
minimal cost of performing a mauoeuvre (Sect. 5) are used as criteria of optimality. 

The latter formulation mfero to the case when such a manoeuvre has to be repeated 
a number of times. Both the above criteria are compared in Sect. 5. 

1. Fomulatloo of the vpriouoaai problem. When the optimal control program is realised, 

the controlled system can be affected by random factors cansing failures of the system. 

The probability of failures cau depend on time, phase coordinates, control parameters and 

control functions. fn such cases, some definite reliability may have to be stipulated in 

order to construct the optimal control program. This may, in turn, alter the character of the 

optimal control substantially. 
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14 V. V. Tokarev 

In this former paper [l], the author considers one of the problems of optimal control 

in which random destructive processes act on the system. There however, the necessity 

of assuming some specified reliability did not manifest itself - instead some character- 

istics* which were averaged according to a definite method, were minimised. Moreover, 

the probability of failure was assumed to be independent of control functions. 

Paper [g] investigates the problem when the duration of the controlling action is 

specified. If the dependence of the probability of failure-free performance on its duration 

is assumed known, then the specified duration of performance can be treated as the speci- 

fied reliability. In this case however, the influence of phase coordinates and control fnnc- 

tions which are both time-dependent on the probability of failure, cannot be estimated. 

In the present paper the problem is formulated as follows: Consider a dynamic system 

whose behavior is described by a system of equations of the type 

Xi’ = fi (t, “jc Uk, WI> (i, i=O, 1,. . ., n; k=l,. . ., r; 1= 1,. . ., q) (1.1) 

where xi are phase coordinates of the system, uk are control functions, w1 are the constant 

control parameters and a dot ’ denotes differentiation with respect to time t. 

Boundary conditions are given with respect to ri at the times t = 0 and t = T, and our 

aim is to secure the maximum (minimum) value of the control functional of the problem 

x0 (T). We shall call this the initial variational problem. 

As far aa the failnres are concerned, the dynamic system (1.1) is considered to be a 

single unit - i.e. failnre of one element causes the failure of the entire system. 

We also assume that when the failure occurs at any instant of time, then the problem is 

not fulfilled, and, that after the failwe the system remains inoperative. 

Our aim is to construct such a control program and to choose such parameter values, 

which would not only satisfy all the conditions given above, but would also aecwe a 

specified probability of failure-free performance of the system (i.e. reliability specified 

in advance). 

We assame that the failures form an ordinary sequence without after-effects [4], and 

the word ‘ordinary’ means here that the probability of simultaneous occnrrence of two or 

more failures, is nil. The absence of after-effects means, that the probability of failure 

over a certain interval of time depends only on the length of that interval and is not 

influenced by the previous intervals. 

It is also assumed that the mean number of failures h per unit time (density of the 

sequence) 

l In [I] a derivation of formulas for the average moments of failures was not rigorous from 
the point of view of the theory of probability. The author is grstefnl to R.V. Studnev for 
pointing out this shortcoming which was removed from [Z] without altering the formulas. 
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A = h (t, Xj, U&t U+) > 0 (1.2) 

is known and dependent on time, phase coordinates, controlling functiona and control 

parametera. Than, the probability R of the absence of failures over the interval [O,T] 1s 

equal [4] to 

R = exp (- j A&) (1.3) 
0 

where h ia calculated along the trajectory h = k (t, Xj (t), Uk (t), wl). 

The relationship (1.3) expresses the condition of specified reliability 0 < R < 1. 

This can be brought in line with the eqnations of the initial variational problem either by 

the classical methods where (1.3) becomes an ieoperimetric condition 

T 

s 
h(t, Xj, Uk, 2~) dt = -h R (1.4) 

0 

or by utilising the maximnm principle, when (1.3) becomes a differential eqnation with the 

following boundary conditions 

A’ = h (t, Xj, uk. vr), . A (0) I- 0, A (T) = - In R (1.5) 

The variable A will appear here aa an additional phase coordinate of the oyatem (1.1). 

We shall call the value A, = A (T) a conditionally admissible mean value of the failnrsl 

over the whole time. If R = 1 is asoemed, then At - 0 cannot be fulfilled, but when R < 1 

and decreases, then the admissible nnmber of failures increases (e.g. tbe interval 

0.5 ,< R 4 1 corresponds to the interval 0.7 4 At < 0). 

Let us now denote the solution of the initial variational problem by Xj” (t), &a (t), 

and WI*. If we also find that 

(1.6) 

then the reliability R will obviously be secured and the condition (1.3) will be l uperflnon~. 

The same situation arises when Z”hm,, < - ln R. 

Now, aseuming that the condition (1.6) is not fulfilled, let OS write the equationa of 

the problem of optimal control with the reliability specified by ((1.1) + (1.5)) 

(1.7) 

%. = fi (t, “j, Uk, WI), x4 (0) = 90, xt (T) = Q, 

x = h (t, xj, a&, WI), A (0) = 0, A P-7 = -lnR, 
x0 (T) = max (mint 

We see that in the above form, (1.7) represents the Mayer’s varietional problem. We &all 

now make two remarks concerning the generaliaation of (1.7). 
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lo. Let the density of the sequence of failures h depend also on the duration of per- 

formance of the system $, (t, < t, compare (1.2)). Th en, by [3], a differential equation 

should be incorporated into (1.7). Its bonndary conditions would be* 

tp* = 6, tp (0) = 0, t,” (T) = opt 

where 8 (2) = 1 or 0 is a relay control function equal to unity when the system is on, and 

to zero when the system is off. 

This function should, by means of a multiplier, be incorporated into the controls u 

in (1.7). which assume zero value when the 

2’. Let the control I be allowed to 

from the range 

, urnax] and become zero in the off 

position. Density of the sequence of 

0 b failures is equal here to x (u) and h (0), 

respectively (see Fig. la). 

FIG. 1 

In this case, to represent the right- 

hand side of the last equation of (1.7) as an invariant type function, we shall use once 

more the relay control 6 (t) : 

fi = h (0) + [h (24) - h (O)] 6 

substituting at the same time u6 for u in the remaining equations. 

The above approach can also be used when the density A (0) of the sequence of 

failures when the system is in an off position is different from the limit density h (0)’ 

when I + 0 (see Fig. lb) 

Later we shall use this method to solve the problem of delivery of maximum payload 

when a body of variable maas moves in the gravity field (see [2]). 

Two cases will be considered: that of restricted thrust and that of the limited exhaust 

velocity. 

2. Rafction jet with rest&ted power. For the optimal (without considering reliability) 

modes of performance of a propulsion system with a limited power, we find that the maximum 

ntilisation of power over the active intervals emerges as a characteristic feature. More- 

over, if the prop&ion system is ideally regulated (thrust and exhaust velocity not res- 

tricted) then passive intervals are absent irom the optimal trajectory (see review [2] ). 

l Here, contrary to 131, the final value of tP(7) is not given and should be selected so as 
to conform to the optimal trajectory. 
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We shall now define the probability (1.3) of successful completion of a manoeane. 

The density of the sequence of failures (1.2) we shall assume to be dependent on the mode 

of performance of the engine 

h = h (t, N) (ah/Xv > 0, 0 < IV(t) < 1) (2.1) 

where N is the power expressed in terms of the maximum power. 

If we limit ourselves to the case of an ideally regulated propulsion system, then the 

problem of delivery of the maximum payload will separate, as before, into a static and a 

dynamic part ; the character of the solution of the static part of the problem will, for 

example, be not altered in case of a single-stage device 

G, = (1 - 1/@)“, G, = l/@ - 0, G, = J@ (2.2) 

where G,, G, and GP are the weights of the payload, engine and propellant, respectively, 

referred to the initial weight of the device. @ is &en by 

T 

@=$ $& 
S 

(J = j$dt) 
0 0 

(2.3) 

where a is the specific mass of the engine, g is the acceleration due to gravity, a is the 

acceleration due to the mass expelled, i.e. thrust divided by the mass flux out of the 

vehicle. The dynamic part of the problem reduces to the minimisation of the integral I in 

(2.3). An argument showing that N (t) 1 1 is optimal since N does not enter the equation 

of motion r” = ai + g (r is the radius vector, g = g (r, t) is the gravity vector, i is the 

unit thrust vector), could be presented if the reliability was not taken into account. We 

cannot do this here, since (1.5) is added to the equation of motion, (1.5) determining the 

allowed number of failures, and x is defined by (2.1). If N increases, then the expelled 

mass decreases (see the integral in (2.3)). if th e acceleration to be achieved is kept 

constant (a (t) = const). Density of the sequence of failures (2.1) also increasea with N, 

hence we can expect the optimal program N (t) to be different from N (t) E 1. 

Equations (1.7) of the variational problem of constructing the optimal trajectory when 

the reliability of the completion of a manoeuvre is given, consist of the equation describ- 

ing the change of the integral (2.3), equations of motion and of the equations defining the 

allowed number of failures with the corresponding boundary conditions 

J’ = a2 IN, J (0) = 0, J (2’) = min 
r’ = v, r (0) = rol 
V’ = ai + g, 

r (T) = rl 
v (0) = vo, 

A’ = h (t, N), 
v (T) = VI 

A (0) = 0, A (T)’ = - In R 
(2.4) 

(0<4P)<~, odN(t)<i, Ii(t)1 ri) 

Optimal laws of change of the acceleration due to reaction a (t), of the power N (t) 

and of the direction of the thrus vector 1 (t) should, by the maximum principle, secure 



18 V. V. Tokwcv 

at any time the absolute maximum of the function H (minimum of J (T) is sought) 

H= - a2 /N + a (pu,i) + h (t, N&A - (I~.v) + (Pu.g) (2.51 

where the impulses Pr, Pu, and PA satisfy the equations 

pr’ = _ ;;. IL: _; (pv.g), 
(2.61 

3H pv’l-_,,_pr, p;___~KI-o 

The impulse corresponding to the phase coordinate ] is 

assnmed to be identically equal to minus unity, since we seek the 

minimum of 1 (T) and / does not appear in the right hand sides 

0 1 N of the above equations (dH / aJ =O). 

FIG. 2 Maximum of H with respect to i and a is reached when 

i = pv I pv, a = ‘iguN (pu = 

and after that,the part of H which is dependent on N, assumes 

HN = ‘14pu2N + h (t, N>PA 

IPV I 1 

the form 

(2.71 

(2.8) 

which can be used as a basis for determining the sign of the impulse PA= conet. (see (2.6)). 

Let us a8sume that if pa > 0, then the maximum of H occurs when N = 1 (since 

by (2.11, ah / b’N > 0). ‘h is means that the optimal trajectory will not change on 

neglecting the reliability. 

Now, when we formulated the general problem (1.71, we assumed that the condition 

(1.6) wss not fulfilled and that a given reliability R could not be secured on such a 

trajectory. Hence 

PA < 0 (2.9) 

We shall note two properties of optimal trajectories with reliability, which result 

from the condition of maximum of (2.8) in terms of N. 

lo. For all functions A (t, N) from (2.1) which satisfy the conditions 

J. (t, W > &, + (A, - UN, A (t, 0) = &I (t>, h (t, 1) = h, (t) (2.101 

(see the shaded region on Fig. 21, the control N (t) is the limiting control and the optimal 

trajectories coincide with the values of the functional / (Tl. 

Indeed, if we substitute a linear function h (NJ from the inequality (2.101 into (2.81. 

then the resulting function HN 

HN maj = h,p~ + [‘i,p,’ + (Al - &,)PAIN 

will, by (2.91. be an upper bound for all HN containing X (t, N ), satisfying (2.10) 
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HN (h’? < HN ma1 @)s Hiv (0) = HN maf (0)~ ffN (1) = HN m:tj (I) 

Hence,max HN < max HN maj,Hx m;lj however is a Iinear function of N, and its 

maximum is reached at the boundary points 

iv = I *s P,Z>--~~(~-.AO)P~, i\? Z= c) as p,” < - s @I - ho) Ph (2.11) 

At these points functions HN and HN maj coincide, therefore the maximum HN 

for all h from (2.IO) will occur at the above points. Hence, the optimal conttof N (t) is the 

limit of (2.11) and the intermediate values of x will be absent from the problem. 

At the point N = 1 and N = 0, all x (t, N) from (2.10) assume the same values A, (t) 

and X, (t). This means that the optimal trajectories and the magnitudes of the functionals 

f (I’) will be identical. 

29 If dh I ahr = 0 at N = 0, then the optimal trajectory does not contain any 

passive intervals. In this case the partial derivative of (2.8) with respect to N is 

dHN / aiV = ‘lp~u’ + p~ah I dN 

and will, at the point N = 0, be aIways positive (except for the isolated moments when 

p,, = 0). Hence, the optimal value of N which guarenteee the maximum of (2.8) is 

always positive, i.e. passive intervals are absent. 

Next we shall consider a particular case of (2.1) 

h = L (N) = hmax N” (Amax = cons& n > 0) (2.12) 

(see Fig. 3). For all 0 < n f 1 (shaded region on Fig. 3), the optimal control N it) is 

defined by (2.11), where ho = 0, J.1 = li, max, and the property lo holds. For n > 1, we 

have the property 29 and the optimal control N ft) is 

ha un-11 
N = f as pus > - 4nphAmax, N= + 

4n PAhuax 
as pva < - 4nphhmBx (2.13) 

i.e. intervals appear, over which the performance is 

variable and less than maximum. 

The results obtained above do not depend on 

the type of the dynamic manoeuvre (i.e. on 4, v,, 

c,, V, and g (r, d). In order to complete the solution 

of the variational problem(2.4) we shall presuppose 

the simplest manoeuvres- one dimensional motions 

in the force-free field fg = 0) : translation between 

two points at rest and attaining the given velocity. 

In the absence of gravity, equations (2.6) cau be integrated directly 
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pp = const, pu = p*o - Prt (2.14) 

For the problem of translation between two points at rest, we have the following 

boundary conditions 

r (0) = 0, v (0) = 0, r(T) = 1, v(T) = 0 

The problem is symmetrical with respect to t = H T (with the accuracy up to the 

instant of reversal of the direction of thrust), consequently we can restrict ourselves to 

considering only .the first half of the motion (0 f t f l/J’), writing the boundary con- 

ditions as follows 

r (0) = 0, v (0) = 0, r (‘/,T) = llpl, V’ (V,T) = 0 

and doubling the value obtained for the functional .I (T) = 2/ (K 7’). Since 

v* (VJ)=O, con==quently pv (‘/J) = 0, i.e. p; = poo (1 - 2t / T). 

Substitution of (2.7), (2.11) or (2.13) into (2.4) to obtain the optimal controls with the 

function p,(t), makes it possible to integrate (2.4) by parts. The unknown constants 

pvo and ph are found from the final conditions 

r (‘l,T) = l/s& A (l/*T) = -V2 In R 

If the reliability is not fixed (A (T) = opt), then px = 0 and we have the following 

solution (see [2]) : 

N+ (t) = 1, a* (t) = 6 (1 / T*) (1 - 2t / T), J* (T) = 12 (P / T9) (2.15) 

With R given, the solution will depend on the parameter 

x= -lnR/Thm,x (O<r.\<4) (2.16) 

which represents the ratio of allowed number of failures A (T) = - In R to the maximum 

possible number of them,which is Am,, = Th,,,. 

0 

a 

0 tr MTt U tr @Tt 0 

a b 

FIG. 4 

Finally we obtain the solution in the following form 

@T t 

c 
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For 0 < B < P, 0 < x < 1 (Fig. 4a, camp. f31) 

For O<f\<tt 

Iv@)= 1, a(t)= ao(f--2t/T) 

when tl < t g ItraT 
.o=~[I-(,-2~)s1_1, t,=&T 

N(t) = 0, a(t) =0 

J (T) = 12 (1% / I”) [1 - (1 - #I- 

For a > 1, (@ - 1) / (3n - 1) < x < 1 (Fig. 46) 
(2.17) 

when 0 < t < tl 

N(t)= 1, a (t) =ao(l-2t/T), 

when tl< t < l/zT 

1 - 2t / T 

N(t)=(t -&,T 
a(t) = a0 

( j.__ 2t/)~tn+l)J(n-l) 

(f-_Bt,,T)m-lj ’ ‘I 

J(T)=;12($8)[1--$ (3R;1)a (1 -%)s]-1 
For n>i, O<x<(n-1)/(3n--1) (Fig.bc) 

a (t) = Ta 3 (n - 1) 
61 3n-1 jf_2 t$WP-~) 

Fig. 40 to c gives the comparison of changes of power N and acceleration due to thrust. 

Dotted Iines represent the laws (2.15) which are optimal in absence of failures, while solid 

iines represent (2.17). 

On Fig. 5, solid represent the relation I/J* versus x where J is taken from (2.17), I* 

from (2.15) snd 1c from (2.16), for various values of n shown in (2.12). Increase in reliability 

(decrease in X) with other conditions kept unchanged, leads to the increase of the functional 

1. Corresponding decrease in the payIoad can be calculated from (2.2) and (2.3). 

The difference between the curves 0 < n < 1 and those for n = 0, 2, 3, 4, gives some 

idea of the advantage which can be gained by using the intermediate power values. 

If at n > 1 the condition of the fixed reliability could be fuIfilled only by switching 

the engine off, then the functional would have the same value for all A (N) (the curve 

0 < n \< 1). Program (2.13) makes it possible to lower considerably the value of the 

functional. 

For the eases when a certain velocity has to be reached (velocity fncrement), the 

boundary conditions are 

r (0) = 0, 2, (0) = 0, r (T) = opt, 2, (!I’) i= Av 

Hexe the value of r (2’) la not given, hence pr (2’) - 0 and, according to (2.14), 
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FIG. 5 

0 
a 

0 T t 

a 

0 T t L 
a ” 

FIG. 6 

Pv (t) = P”0 Hence power N and acceleration a are constant over the active intervals 

(see (2.13), (2.11), (2.7)). If reliability is disregarded (PA = 0) , then passive intervals 

are absent from the tajectory and the following solution is obtained (see [2] ): 

fv+ (t) = 1, a* (t) = Av / T, J* (T) = Av2 I T (2.18) 

If the value of the index n in (2.12) falls within the range 0 < n Q 1 , then the 

passive integrals appear. Their number and distribution do not influence the functional 

of the problem, and their total duration is chosen from the condition of a given reliability 

A (T) = - In R. When n > 1, then by 2’passive intervala are absent and the condition 

12 (T) = - ln R can be fulfilled only by reducing N. 

Performing all the calculations we obtain 

when 0 < n < 1, 0 < x < 1 (Fig. 60, camp. [3] ) 

N(t)=l, a (t) = Av / tl for O<t < h 
N(t) = 0, a(t) = 0 for hGt\<T 

(tl = xT) 

J(T) = (Au2 / T) x-1 (2.19) 

when n>& 0 <x< 1 (Fig. 6b) 

N (t) = xl”‘, a (t) = Av 12, J (I) = (Au2 / I) x”“’ 

Dependence of the functionals (2.19) and (2.18) on x and n is shown on Fig. 5 by 

means of broken lines. We can see that for the case of translation between two points at 

rest (solid lines), the requirement of fixed reliability leads to much smaller increase in 

the value of the functional, than for the case of velocity increment. 

In order to estimate the corresponding loss in the payload, we must use the first 

relation from (2.2). Fig. 7 shows an example (@* =(a / 2g) .l* = 0.1, 0 < n < 1) of 

the dependence of the payload on the reliability for various valnes of the maximum possible 

number of failwes A,,,= Th,,, = 0.2, 0.5, 1, 2 (here solid lines refer to translation 

between two pointa at rest, broken lines to the velocity increment). 

Horizontal parts of curves on Fig. 7 correspond to the values of R, for which the 

ineqaality (1.6) also holds. 
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3. Limited exhaust velocity. In the problem on the maximum payload for propulsion 

system with the limited exhaust velocity (thermal rocket motors) we find it convenient to 

use, over the active intervals (without considering reliability), the notion of maximnm 

exhaust velocity. 

Let us assume that the rise in the exhaust velocity 

(i.e. rise in temperature) leads to the increase in A (1.2) 

(also compare (2.1)) 

FIG. 7 

h = h (t, V) (aA/av>o, OBV<f) (3.1) 

(in this and snbsequent arguments exhaust velocity V 

is expressed in terms of maximum exhaust velocity I’,). 

If the reliability is fixed (as in case of restricted power) 

then some intermediate values of exhaust velocity may 

become optimal. 

We shall consider the maximum thrnst PO and the maxfmam exhaust velocity as known. 

Then the problem on the maximum payload becomes a problem on the maximnm ffnal mass, 

and equations of the variational problem (1.7) can now be written (camp. (2.4), thus 

G’= -+(P/V)6, G(0) = 1, G(T) = max 
r’ = v, r (0) = ro, r(T) = rl 

v’=ao(P/G)iCI+g, v (0) = vat v(T) = VI (3.2) 

h’ = ho (0 + [h (C V) --ho (t>l 6, R(0) = 0, h(T) = -1nR 
(O\<P(t)<i, O<V(t)<l, B(t)=1 or 0, Ii(t)lsl) 

Here G is the instantaneous weight (referred to the initial weight C,), p = gP, / GJ, 

is the corresponding mass flux out of the vehicle (a known parameter), oo = gPo / Co 

is the initial acceleration due to thrust (a known parameter). Thrust P and exhaust velocity 

V are referred to their maximum values PO and V,,. 

It is assumed that when the engine is off (8 = O), th e d ensity of the sequence of failures 

becomes b,(t) (when & = 0, then &o(t) (he (t) < h (t, V). To reflect this fact in (3.2). we 

have used the case 2’ from Sect. 1. 

If it was known that the thrust P did not assume intermediate values 0 < p < 4 

on any optimal trajectory (so called special condition) then the function 6 could be omitted 

and replaced in the last eqnation by P. In our case, however, this is not immediately 

obvious. 

To analiae the structure of the optimal control, we must investigate the absolute 

minimum of the fnnction H (compare (2.5)) ( we seek the maximum of C (T)) with reference 

to i, P, 6, and V. 
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H= 
(3.3) 

+ ho (f) Pa + (r&-v) + (Pu.g> 

Impulses Pr, Par and px are defined, as before, by (2.6), while the impulse pp is 

given by 

From the minimum of (3.3) with respect to i it follows (camp. (2.7)), that 

i=-hh (3.5) 

Using an argument analogous to that in the Sect. 2 (eae (2.9)) we can show that 

PP (Q < 07 Pa>0 (3.6) 

ff we now assume that at some instant of time p, (t) > 0, then minimum of H implies 

I’ - 0 (irrespective of the sign of Q) and P = 8 = 1. Now, P = 1 when V = 0 is physically 

inadmissible, hence pp (r) ( 0 everywhere. If we now put ph < 0. we shall obtain V = 1 

everywhere and the moment at which the engine is turned off will occur later than in case 

of ph = 0. At the same time the condition of fixed reliability cannot be fulfilled (since it 

is assumed that the inequality (1.6) does not hold). 

We shall now show that the thrust cannot assume intermediate values 0 <P < 1 on 

the optimal trajectory. Since P occurs in (3.3) in the linear form, optimal intermediate 

values of P may appear when the coefficient of P becomes equal to zero within some 

interval of time (special conditions). In this case however 6 = 0 since pi > 0 (see (3.6)) 

i.e. the thrust should be equal to zero. 

The above is valid for any manoeuvre in an arbitrary gravitational field. Having proved 

the absence of special conditions in the structure of the optimal control, we shall exclude 

the control function 6 (r) from (3.2) to (3.4) : we shall replace all P8 by P and substitute P 

for any 6 appearing without P. 

Then the part of H dependent on the controls V and P will, together with (3.4), become 

From the condition of minimum of Hv with respect to V, follows 

v=1 if htt,V)>,h(t,I)+(~p,lpa)(l/V--l) (3.8) 

If the condition (3.8) is not fulfiIled, then there exists an optimal intermediate value 

0 < V < 1, which can be found from 

VVh I dV = - /_tpr I ph (O<V<l) (3.9) 

Null values of I’ are absent from the optimal control. When 
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the condition (3.8) wilLbe valid over the whole trajectory, since pp < 0, plr < 0 

(see (3.4) to (3.6)). In this case the exhaust velocity will never assume any intermediate 

values. 

Optimal control in terms of thrust can, as we showed before, be only a limiting 

control. The sequence of active and passive intervals on the trajectory is determined by 

P = 1 if H, -&UOC-~ - &PA <O, p = 0 if If, -~vOoG-l - Aoph> 0 (3.10) 

which is obtained from the condition of absolute minimum of the function (3.7) with res- 

pect to P. 

Let us now consider the case of limited acceleration a (in place of limited thrust), 

Here, the problem on the maximum final mass C, reduces to finding the minimum of the 

functional 
T 

J= 5 +dt (o<v\(l, Gl=G,y-J/V~) 
0 

(3.11) 

(so called characteristic velocity, compare with (2.2) and (2.3)). 

The absence of intermediate values 0 < a < a0 in the system of optimal control 

can again be proved in the manner similar to that of the previous case. To do this, we can 

use the (3.2) form of the equations of the variational problem 

last equations 

J’ = (a0 /V) 6, (J (0) = 0, J (T) = min), 

Theoptimal control of thrust will be determined from the 

(1.7). replacing its first and 

v’ = a,& + g 

first relation of (2.7). 

Controls V (t) and 6 (t) can be found from the condition of the maximum of the function 

(compare (3.7)) 

HV.S = WV + pyao - ho (d PAI 6 ‘WV = - a, / v + A (t, v PA. Pi<O) 

To find the optimal exhaust velocity we shall use (3.8) and (3.9) in which however 

the substitution pp,, = - a, should be made. 

Moreover, if ali / 0t = 0, then the optimal exhaust velocity colinear with the dfrection 

of motion will be constant. Times at which the engine will be on (8 = 1) or off (8 rt 0) can 

be found from the relations 

6 = 1 when H, + RDso - A, (t) pA > o, 6=o when Hv+p,ao-Ao(t)p,,<~ 

analogous to (3.10). 

4. Criterion of weight. Existence of the optimal probability of completing a manoeavre 
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can be ahown by means of the following argument. The increase of reliability cap, as shown 

in the seotions 2 and 3, be achieved at the expense of cutting down the payload (this is 

sqnivalent to the increase in cost). Nevertheless, the above effect is accompanied by the 

increase of the percentage of successful attempts of completing a manoenvre. At the same 

time the optimal probability of completing a manoeuvre will always lie within the interval 

[O. l] since, when the reliability is nil, the percentage of successful attemprs is also nil, 

while, whoa the value of the reliabiltty is very much smaller than unity, the payload be- 

comes equal to zero. 

Let us assame that n manoeuvres successfully complete required (m > n) attempts 

which failed due to some adverse external factors. Then, the amount of payload auccess- 

fully delivered to the terminal point of the trajectory per one attempt, will be 

(4.1) 

where Gu is the payload, the delivery of which was the aim of each attempt. 

We shall classify an attempt as unsuccessful if failures occur during approach to the 

final orbit or during the execution of a necessary manoeuvre. First of the above oases is 

characterised by Re which is the reliability of placing the rocket snccessfulIy in the 

initial orbit, while the other is characterised by the reliability R of the performance of the 

rocket durfng flight. 

We assnms that Re and tlta mean number of failures x of the engfne per unit time, the 

Iatter defining the reliability R (Bea (1.2) (1.39, are both known. 

From the above probabilistic characteristics we can derive the mathematical expscta- 

tion (4.1) of the payload delivered socceaefully per one attempt 

(G,) = R&I& (4.2) 

(since (m> = n I R,,R according to the rule of moltiplication of probabilities). The 

maximnm (4.2) is taken as a criterion of optimaby, and the corresponding variational 

problem is presented in form of the Mayer problem 

<c*>- = -Roe-” (hi& + q), (G,)t, = G, (0) = 1 -G,, (G&=T = max 

G; = - q, G,(T) = opt 
. 

r =v 9 r (0) = r0, r CT) = rl (4.3) 

+=Pi/(G.+G,)+g, v (0) = vo, v(T) = vr 

11’ = h (t, q, P, . * .), A (0) = 0, h(T) = opt 

Phase coordinates of the problem are ( G,), G,, r, v, A (G, is the total weight of 

the payload Gw and the propallaut G,; G, is the weight of the engine, all weights are 

expressed in terms of the total initial weight). Control functions are p, q and f (q is the 

mus exhausted, P and q are referred to the initial mass). 
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To present the eyetem (1.3) more fully, we mast say something more definite about 

the formula for the weight of the emgine, i.e. we must show the connection between its 

weight G, and the limit values of control parameters, on which the thrust and the amount 

of mass sxbaaeted depend. 

In this case it is convenient to replace P and q assumed to be independent control 

functions, by parameters on which some constraints have been placed (21. 

Variational problem (4.3) differs from (1.7) in the final condition referring to the phase 

coordinate A. In (1.7) a final value of h is given (A (Q = - In RI, while in (4.3) it is 

chosen from the condition of optimality. 

Remarhs loand 2’made in Sect. 1 about (1.7) are valid for (4.3), and the properties 

of optimal controls established in Sections 2 and 3 still hold. 

If the solotion of the variational problem on maximum pay’toad when reIiability (Le. 

the dependence of G, on R) is given, is known, then the functional (4.2) becomea simply 

R, and the problem (4.3) is reduced to finding the optimal reliability R from the condition 

of maximum (4.2). 

The procedure of constructing the optimal controls (4.3) will not be given here, since 

it is analogous to thet in Sections 2 and 3. 

We shall limit ourselves to solving an example on the ideally regulated propulsion 

system of limited power. In Sect. 2 we have obtained corresponding eolations of the 
problem on maximum payload with fixed reliability 

where Am,, = T&,x is the maximum possible number of failures over the whole time of 

flight T (Amax is here the maximum density of the sequence of failures). 

The parameter A,,, is determined by the conditions of the problem while the para- 
meter x is chosen so as to satisfy the condition of reliability given by (4.4). 

In Sect. 2 we have illustrated in more detail the dependence of the density of the 

sequence of failures on controlling functions (see (2.12)) by giving analytical relationships 

between J (x) which was the minimal value of the problem (2.4) and the parameter x . 

In the present case, as we have already mentioned, the functional (4.2) of the problem 
nnder consideration, will be the fnnction of the parameter x 

(4.5) 

where J (s) is determined by (2.17) and (2.19) when 0 < x 4 1 and where J (x) = J (1) 
when x >, 1 . ((2.17) corresponds here to the transletion between two points at rest in the 
force-free field, while (2.19) cerreeponde to the case of velocity increment in the force-free 
field, see also Fig. 5). 

Fig. 8 shows an example of the dependence of the mean vales of successfully delivered 
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peyload (4.5) on (4.4). Calculations were made for Q* = (a / 2g) J (1) = 0.25, 

FIG. 8 

Rn = 1, 0 < R < 1 (see (2.12)) for variooe values of 

A mes = 0.2, 0.5, 1, 2‘ 

Solid lines here refer to the problem of translation 

between two points at rest, broken ones to the problem 

of velocity increment. Points of contact of the curves with 

the straight line {C,) = R (1 - f@jz, conespond- 

ing to x = 1 are also shown on the graph. The curves 

possess distinct maxima which are reached either at 

O<x<l when 8 {G,,j&==0, orat x= 1. 

For the problem on transIation between two points 

at rest, maximum payload and optimal probability of 

fulfilling a manoenvre are considerably larger than for 

the problem on the velocity increment. This is illustrated 

on Fig. 9 n and b (optimal reliability R as function of 

atL_L_L_L/ 
a 

& 

FIG. 9a, b 

b 

FIG. !Oa, b 

Amax) and on Fig. 10s and b (maximum payload {G>, as a function of Amax). Figures 

9a and 10a refer to the first case while 9b and 106, to the second one. 
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5. Criterion of cost. We have said before that the problem of determining the optimal 

probability of a manoenvre has a meaning only when there exists a necessity of repeating 

this manoeuvte many times. In this case the crtierion of cost becomes important in com- 

par&on with the weight criterion. 

In a manner analogous to (4.1) we shall introduce the mean cost of fulfilling a man- 

oeuvre during a series consisting on n successful and m unsuccessful attempts. This is 

given by 

C(u*m) = n-1 ImC + (M - n)C,l (5.1) 

where C is the cost of one attempt and C, the loss incurred by one unsuccessful attempt. 

Mathematical expectation of the cost of one successfully completed manoeuvre is 

equal to 

(C) = (R,R)-’ [C + (1 - R,R)C,l (5.2) 

We assume that the cost of one attempt 

c = c, + c, + c, + ce 
is sum of the following components: cost of placing the vehicle in the initial orbit 

Co = c&,, is taken to be proportional to the initial weight Co = G, + GPO + G,). 

C, = cxGx which is the cost of the engine taken to be proportional to the weight of the 

engine G,, cost of the propellant and its containers CP = c,&, which is taken to be 

proportional to the initial weight of the propellant G,, and the losses Ce independent of 

weight parameters. 

Loss due to one unsuccessful attempt C, = c,G, we consider to be equal to the 

cost of the payload and proportional to its weight G. Coefficients co, cX, cp, cX and C 
c 

are assumed to be constant and known. 

As a criterion of optimality we shall use the minimum of mathematical expectation of 

the cost of successful delivery of the payload of unit weight c = (C) / G, or, if we 

take into account the relationship between the cost and weight, 

c = & [c&o + Ce + c&c + c,&, + (I- W?) c&,1 
x (5.3) 

Initial weight Go and reliability RO are known, hence we can replace (5.3) by the 

following functional characterising the cost of completing a successful manoeavre 

S= 
I+ S$, + SpGp.0 
R (1 - G, - $1 

(5.4) 

Here the weight G, and G,,, are in terms of the initial weight C,,, while the coefficients 

S, and S, are given by 
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Cx - ca c -c 
sx = c~+c,+ C,IG, >--I, sp = co+:z+~,,Go >--I 

The functional (5.4) is connected with (5.3) by : 

S= Rofl + 4 
c,,+c~+ C,IG,’ Or c = R$ (c@ + h + 2) - ’ 

w5) 

(5.6) 

i.e. the minimum of S is eqoivalent to the minimum of c. 

Wfth reliability R and weight G, of the engine both hnowu, it is a necessary condition 

for the coat S to be minimal, that the weight of the propellant G&a is alao minimal. This is 

obvious from the physical point of view, but for the sake of completenese we ehall give the 

partial derivative of (5.4) with respect to G,, , which ie 

as 
a-= 

1 +Q +(Q--rJ G, 

R(l-CC,--G&a 

The numerator of the above expression is always positive since 

~+s,+(s~--s,)G~~ 
1 

l+SPwhens,-sPZO 

i+s whens 
x x -ss,<() (O<Gx<f) 

and 1 + S, > 0 1 -i- SK > 0 by (5.5). Therefore $8 ! aGp, > 0 and minimum 

of S irr reached when G,, L minimum (R and G, are fixed). 

It follows then, that the results obtained in the minimal fuel problem can be utilised 

in determining the minimum cost S, when the reliability and weight of the engine are fixed. 

Optimal values of R andG,will however be different from those found from the condition of 

maximum payload (4.2). 

it8 

by 

The variational problem on the minimum cost S can be stated analogously to (4.3), if 

ffrst two equations with their boundary conditions and the fourth equation are replaced 

1 fs,+(s,---s,) G, I+ sxGw 
(I- G, - AG$ ’ wb=l-_c 

y (5.7) 
S (T) = min, bGPg = Q (AG, (0) = 0, AG, (2’) = opt), v’ = P (I- AGJl i + g 

Here G, (instantaneous reserve of the propellant) is replaced by a new phase coordinate 

Al& =Gpo-- Gp (t> (mass exhausted up to the time t). 

Let us consider once more the case of an ideally regulated propulsion system of 

limited power. Integration of the equation for the toss of mass due to thrust [2]. gives 
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where C,, is the weight of the engine which, in this case, 

defines the total weight of the propulsion system CX. 

If the density of the sequence of failures does not 

depend on the weight of the engine (see (2.1) (2.12)), then 

the optimal value of G, can, as before [2], be found with- 

out solving the dynamic part of the problem on the mini- 

mum of the functional 1. By putting (5.8) into (5.4). we 

shall be able to determine the optimal value of G, using 

1 the conditions &Y/&3, = 0 

FIG. 11 c,=[~(D+~(<-l)@q”~-pD ( ISS e=& (5.9) 
Y 

where s,, replaces s,J 

Parameter (gives the cost ratio of the unit weight of propellant to the unit weight of 

the engine (see (5.5)). When [= 1 ( q e ua costs), the formula (5.9) reduces to the previously 1 

obtained optimal relationship between the weight of propellant left and the weight of the 

engine. This relationship secures the maximum payload [2]. 

When we consider it in terms of minimum cost we find that it shifts towards the 

increase in the reserve of the propellant when [< 1, and towards increased weight of the 

engine when [> 1 (see Fig. 11). Differences between the optimal weight ratios can, when 

we change from the weight to the cost criterion, be very considerable and will depend on 

the relative cost of the propellant and the engine. 

We shall now investigate the effect obtained on using weight ratios optimal for one 

functional, in calculating the other. 

In order to reduce the number of parameters, let us eliminate from the cost functional 

S, the part dependent on 6 and @ only 

qm + G” 
pK*@)= &__~G,o_GC, (s=4 [(f +sJP+ll) 

The magnitude p characterises, similarly to S, the cost of completing a manoenvre 

without however taking reliability into account. 

Figure 12 shows, in solid lines, the relationship p (& a) when values, optimal with 

respect to cost, of (5.9) and (5.8) are used for GPO and C,. Dotted lines refer to the case 

when the values 

optimal for the weight criterium are taken for GPO and Gy (see (5.8) and (5.9) for t= 1). 

Fig. 12 shows also the dependence of the payload 
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0 ‘ 

FIG. 12 
FIG. 13 

Gv - $0 G, =f -8 

on QD, for various values of 4 It is clear that the loss in the payload on changing from one 

net of optimal weight ratios to the other is higher, than the lose in the cost (solid and 

dotted lines depicting the cost p coincide for e= 0.5, 1. 2). 

In conclusion we shall show how the optimal probability of completing a manoeuvre 

is affected by adopting the cost criterfon instead of the weight criterion. We shall again use 
the relation J (x) from Sect. 4. Fig. 13 gives the graph S (R) (cost versus reliability) for 
the same parametric values as on Fig. 8 (again, solid lines denote translation between 

two points at rest, dotted lines - velocity increment). It is easily seen that the optimal 

valase of the probability of completing a manoeovre are somewhat higher than those obtained 
when the weight criterium was used (compare the positions of minima on Fig. 13 with the 

positions of maxima on Fig. 8). This can be caused by the fact that in min~iaing the 
cost, we take into account an additional loss incurred during an unaucceseful attempt of 

completing a manoeuvre, the loos being equal to the cost of the payload. 

1. 

2. 

3. 

4. 
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